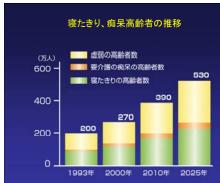
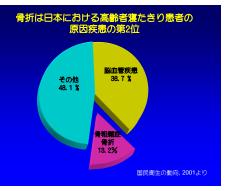
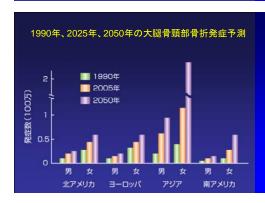
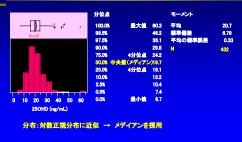
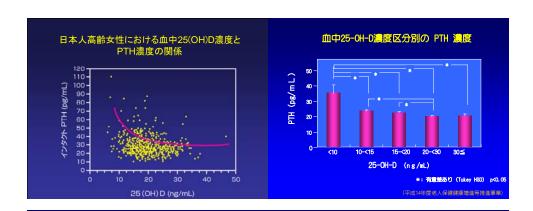

⑤ ビタミン D と骨粗鬆症








骨粗鬆症を予防し、骨の健康を維持するこ とは、個人レベルでの00Lの向上だけでなく、 高齢化社会における深刻な社会問題の解決 につながる重要な課題である。


日本人高齢女性の血中ビタミンD濃度 と骨代謝マーカーに関する研究

対象集団の血中250HD濃度における一変量分布

【対象者】

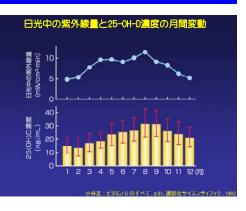
長野県在住 健常高齢女性 432名
平均年齢 62.7±10.7 歳(最低年齢30歳、最高年齢88歳)
【測定項目】
血中25-D濃度
血中Whole PTH (1-84)、Total intact PTH (1-84, 7-84) 濃度
骨代謝マーカー: 血中BAP、尿中NTx, DPD、Ca/Creat、P/Creat、骨密度、骨折有病率
【統計解析】
SAS社製JMP 5.0を用いて行った。
各群間の比較は、一元配置分散分析及びTukey-Kramerの
HSD検定法を用いて有意差検定を行った。また、骨折との関係
はロジスティック回帰分析により解析した。

結 論

高齢女性において、血中25-D濃度が20 ng/ml(Cut-Off値」)を下回ると、血中PTH濃度の有意な上昇が見られるようになり、骨量減少および骨折有病率の増加傾向が現れてくる。

高齢者では、若年者に比べてより多くのビタミンD摂取が必要と思われる。


日本人成人のピタミンD摂取目安量と摂取量 食事扱取基準 食事からの摂取量


	食事	摂取基準	食事からの摂取量		
年齢(歳)	目安置 (μg/日)	許容上限摂取量 (μg/日)	平均値 (μg/日)標準偏差		中央値 (μg/日)
女性					
30~49	5	50	7.0	7.9	3.8
50~69	5	50	9. 1	9. 4	5.8
70以上	5	50	9.3	11. 2	5. 7
妊婦	7. 5	50	4.1	4.4	2. 3
授乳婦	7.5	50	5. 3	4.8	3, 7
男性					
30~49	5	50	8.0	8. 9	4.7
50~69	5	50	11.3	11. 3	7. 9
70以上	5	50	10. 5	10.4	6.8

日本と米国・カナダのビタミンDの栄養所要量の比較

В	日本					
年齢(歳)	目安量(μg)					
18~29 30~49 50~69 70以上	5 5 5					
妊婦 授乳婦	+2.5 +2.5					

米国・カナダ						
年齢(歳)	所要量(μg)					
19~30 31~50	5 5					
51~70 70以上	10 15					
妊婦 18以下 19~30 31~50	5 5 5					
授乳婦 18以下 19~30 31~50	5 5 5					

皮膚におけるビタミンD産生の重要性

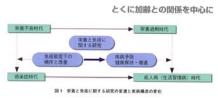
- 1. 皮膚はピタミンDの重要な産生臓器である.
- 普通の生活状態で、生体のピタミンD必要量の80~100%が皮膚 から供給される。
- 3.1 週間当たり1~2時間程度の実効照射量で十分である。 手、腕、顔に 10~15分間程度日照を浴びることにより、10 μg 程度のピタミンD が産生される(M. Holick).
- 4. 衣服(黒), ガラス, ブラスチックはほぼ100%紫外線(W-B) を選 断する。 Factor 8 の化粧品は30%紫外線を運断する。 緯度, 季節, 戸外 で過ごす時間なども、ピタミンD皮膚産生量に大きく影響する。
- 5. 季節的には、7月~9月頃が産生量が多く、1月~3月頃が低い、日本では、血中250HD濃度に季節変動が見られ、赤道付近の国々では一年を選してはぼ一定である。

皮膚におけるピタミンD産生の重要性 (つづき)

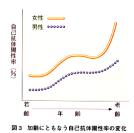
- 6. 高齢者では、皮膚産生量が低下する (1/3~1/4). (M. Holick)
- 潜水艦果務員に一日当たり16μg (600 IU)のピタミンDを服用 させ、全く日果を浴びない状況下で3ヶ月間任務についた場合。 血中250HD濃度は正常値下限にあった。 (M. Holick)
- 8. ビタミンD所要量は、日照が限られた集団を対象として設定されるべきであるが、生活スタイルの変化によりその危険性は増している。従って、ビタミンD所要量を決める必要がある。
- 9. 通常の生活スタイルの人では7.5 μg (300 lU), 日照を受け難 し人では18.5 μg (540 lU), 理想的には20-25 μg (800-1,000 lU)が必要。 (米国・カナダ)

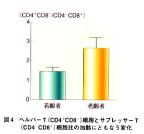
日光からのビタミンD供給

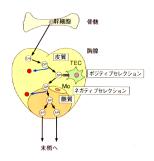
日光浴の目安は夏なら木陰で30分、冬なら手 や顔に1時間程度

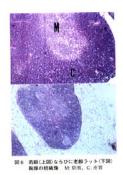

日光に当たる機会が少ない人は、食事から充分ピタミンDを摂取しなければならない。

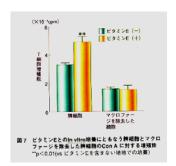
日本骨粗鬆症財団

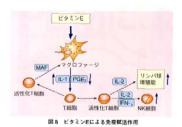

山口県立大学 森口覚


⑥ 栄養と免疫~ビタミンEと免疫~









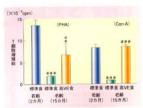
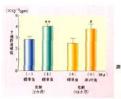



図9 加銀にともなう「機能機能化下に対する高ビタミン正真役 ・ 2000年 ・ 2000

10 辞職す組施措施に対するマクロ ファージの影響、"p<0.05(en 名輪 フット押リンパ形 形文で向きした部分ットのマクロ ファージと誘動した部の名輪ラット ポリンパの形成的

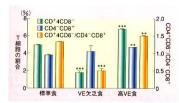
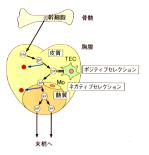



図11 胸腺でのT細胞の分化・成熟とビタミンE栄養状態 ラットは4週除から標準食、ビタミンE欠乏食ならびに高ビ タミンE食にて6週間飼育後、胸腺細胞中のT細胞サブセット率を蛍光標識モノクローナル体を用いてフローサイト メーターに7測定した"D<0.01、"*D<0.001 (vs 標準食 群のT細胞サブセット率)

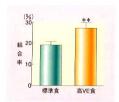
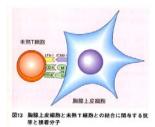
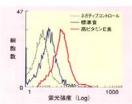




図12 胸腺皮質上皮細胞と未熟 T 細胞との 結合能に対する高ビタミンE食投与 の影響 **p<0.01 (vs 標準食)

銀光強度 (Log) 図14 胸静皮質上皮細胞における接着分子, ICAM-1発 現に対する高ビタミンE食投与の影響

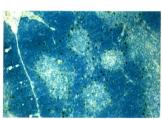
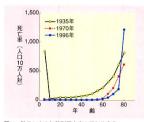
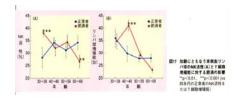
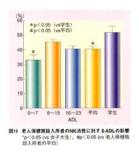
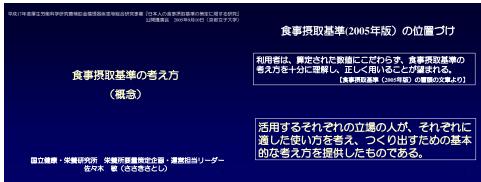
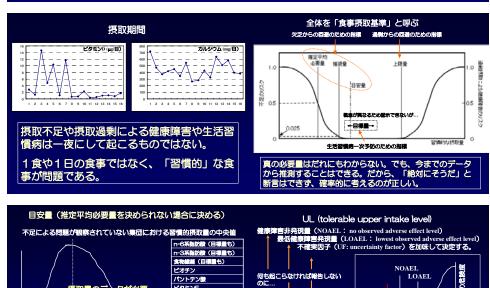


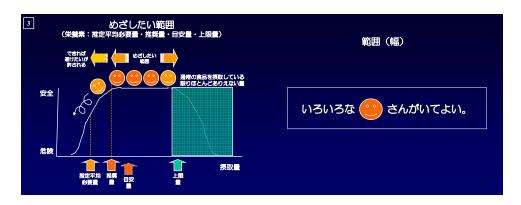
図15 胸腺におけるマクロファージの局在 酸性フォスファターゼの組織化学的染色、マクロファー ジは黒い点として胸腺皮質と動質の境界域に局在して いることがわかる。

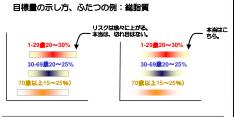
最近のビタミンEとアレルギーに関するエビデンス						
出典	著者名	場所	対象	方法	粉胎	
Ans. of Admit Sec. 318, 49–54, 1980.	Zhong K et af	8*	BME/VTÖX AX 4880	・ 通路 保存性 (10 mg n * Too Ng) かたがけるから 10 mg n * Too Ng) にては10 mg n * Too Ng	アレルギー直収 収容 点面(日間) リン・物の形式) リン・物の形式) (Ose ASSE) ルス・アルド直流) エス・エー経流) エペエー経流) エペエー経流)	
Lamost., 356, 1573-4, 2000.	Fagurty A st of	仲以	는는 2,000년 19-70년	VE, VO, マグルンウム、多様不適当的の関ロでの間知量を開放した。 アレルゲンを用すスト、血管的と重要の開発を行った。	17日本日上の市場の自由には各の日間がある。10日本日上で17ピーのリスク発生には長の 日田がある。	
Set of Dermeted, 41, 149-50, 2002.	Toursi- Hitta E et al	4997	다 79년~월 #8488 88 19-88	のMU DROG e-To-DIO企業をはプラセボの名式を1日 日本テ月国際 第1点。在第4回前の前見と、アナビー住の前月前外の外を会界別した	ARCHER I VIEROMANGORIUMO VIORENTILI-RERECERIUM AARRESTA	
Eur. J. Stemanol, 32, 2401-6, 2002.	LI-Weber M of af	F49	EI- RESIDEN	と、中部会下部的やVEERSON 「PMとCompact 」「VEET もまた は e comb e comb を含むとファートでの時間を受し、その上的中のエ くれては、中間別した。	VESSEL 接続点で開始のも、かかいりしてみと のかいたおけるこの情報を保付する。 VESSEL 本にお思されるアレルギーを扱って発に を取り込む。	
Vet Dermatel, 19, 301-6, 2002.	Gueck T et af	F-(7)	#0 ###### ###### (00)	01章10gg a - To-開放機能で利用機能能し、ヒスタミンとFGG接続線 よびやマーゼとリブターゼを総合機能した。	VERNELAN-TANDALIPOOREMINE され、ヤマーが開発が終すした。 VERNESSEERAN-TRESSEES-TOP 6LNESS	
Slovel Slotzehool Slockers, 67, 2179-62, 2009.	Bando N et al	8#	BALBATTON AN COMB	Qui, i, ii, iio no e e Tro/100 gizallin 4 k, Oliverillio (h.). iii iiii: 上面 (heli iii k.). Gu, iio no e Tro, iio no ii - NOTO, iii no e Tro+100 no ii - カ ロテン/100 gizallin 4 k, Quin (Lin) セ 山田 (Hin)	数で変更性は、m/100 点をはまりを変更した。 100 m/100 点においては最高を開発的た。 ではようなアンタをかって、あかりることにより、 より数のようなが可能的なた。	
Ann, Allerge Anthone, Immunol, 92, 654–658, 2004.	Shahar E st af	129 =14	とト アレルギー性 あ会(記録音) 点を 119位 19-70日	2-1月の日本の日本の1-19回1-100 mg W/月 (00年) 北上はプラセギ (204) 1日日は上、京北、アルルギー会社についてのアンケーを行った 七、会社がたくない 1: 回転した 1: 管理 3: 部化上	概型上の曲状の指導は関わられなかったが、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

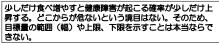




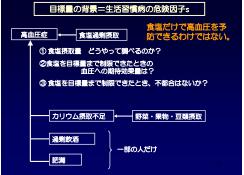

図16 肺炎による年齢別死亡率の経年的変化 (国民衛生の動向、1998)

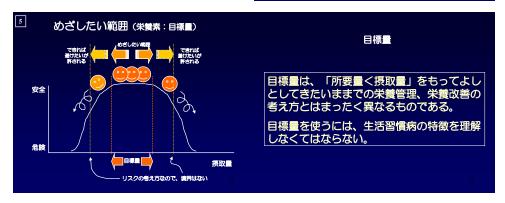


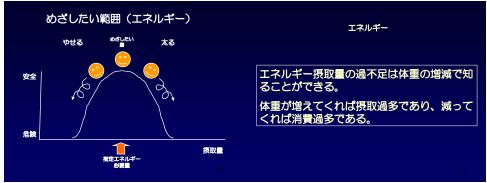









| Proc National Academy Press, 3000: 121 を基である。| Proc National Academy Press, 3000: 121 を基本の表である。| Proc National Academy Press, 3000: 121 を基本の表である。| Proc National Academy Press, 3000: 121 を表である。| Proc National A



栄養管理者としての必要条件と十分条件

必要条件= 「食事摂取基準(2005年版)」を読み、理解している。

十分条件= 必要条件+ 他のさまざまな資料と、現場経験を活用できる。

まとめ

食事摂取基準(2005年版) の位置づけ

利用者は、算定された数値にこだわらず、食事摂取基準の 考え方を十分に理解し、正しく用いることが望まれる。 【食事摂取基準(2005年版)の冒頭の文章より】

活用するそれぞれの立場の人が、それぞれに 適した使い方を考え、つくり出すための基本 的な考え方を提供したものである。

ありがとうございました。

研究課題名:日本人の食事摂取基準 (栄養所要量) の策定に関する研究

背景:栄養素の過不足が生活習慣病のリスクファクターとなる。 道 正な栄養摂取が寿命の限界まで若年成人の体力と美の維持に重要 であることがわかってきた。

目的:乳児期,成長期,若年成人期,中年期,高年期の適正なピタミン必要量を明らかにし、生活習慣病の軽減に寄与し、国民が望む高度なQOLの要求に応えることを目的とする。

方法と得られる報果:栄養調査、血液中・尿中のビタミン量の測定 ビタミンの必要量と相関する健康指揮。社会的関心事の高い健康 指揮を調べ、これらの関係から、栄養状態を判定する方法を構築 し、かつ適正必要量を推定する。

制持される成果:寿命の限界まで若年成人の体力と美を維持する 個々人の最適な食生活の提言を行うことで、生涯高度なQOLが達成でき、医療費削減につながる。

中年の被験者の確保

食事摂取基準に科学的根拠を与える実験を、 若年成人を被験者として行っているが、対 象者の年齢層を広げ、食事摂取基準をより 精度の高いものとするため、引き続き、平 成17年度も実行する。

研究の概要(2/8)

文献の電子化

文献の電子化が進んでいるが、なお、コンピュータを利用した文献検索にかからない大学紀要など がある。この中で、価値ある食事調査報告がある。 平成17年度もこの情報を整理し、電子化し、公表 する作業も行う.

研究の概要(4/8)

6/13

過剰摂取による健康障害は欠乏症の裏返し

上限量の設定

・ピタミンB。(感覚神経障害) ・ナイアシン (消化器系の障害)
 ・業酸 (神経障害)
 ・ビタミンA (皮膚の落屑)
 ・ビタミンE (出血作用)

・ピタミンD(石灰化)

策定されていないビタミン 7/13

ピタミンBs, ピタミンBs, ピタミンBs, パントテン酸, ピオチン ピタミンC ピタミンK

研究の概要(7/8)

哺乳量(=泌乳量)の測定

母乳中のビタミンの測定

研究の概要(1/8)

外挿法の問題点の解決

乳児(0~5月) および成人(18~29歳)以 外の年齢区分のヒトにおいては、乳児から の外挿値, あるいは成人 (18~29歳) から の外挿値が採用されている。この二つの値 がある年齢区分では、大きく乖離するビタミンがある。平成17年度は、この原因を代謝面から<u>モデル動物を用いて</u>検討する。

研究の概要(3/8)

栄養状態の指標の確立

栄養状態の指標は、欠乏状態の前段階を見極める ためのものである。一般的に、欠乏症の指標には 血液、栄養状態の指標には尿が適していると考え 皿放、未養れ続い指標には水が回じているとさん られている。しかしたがら、この科学的根拠は少 ない。そこで、尿中排泄量と摂取量との関係式を 求める。このことにより、精度の高い栄養指導が

研究の概要(5/8)

普及活動

「ビタミンは体に良い」と思い、過剰に摂 取しがちである. 過剰毒性が顕在化する前 のビタミンの解毒代謝を明らかにし、未然に防ぐ研究を行うとともに、広く国民にビ タミンにも過剰毒性の危険性があることを 普及させる講演会を行う。

研究の概要(8/8)